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Specifically, we present an iteration algorithm based on
the nonlinear averaged flux (AF) method [9, 10], alsoRecently, several nonlinear spatial discretzation methods have

been developed for the linear Boltzmann transport equation. One known as the first-flux (FF) method [11]. The AF method
of these is the highly accurate nonlinear corner-balance (NLCB) is defined by a nonlinear system of equations with two
method, which yields a strictly positive solution. Because the dis- parts: (i) the transport equation and (ii) low-order equa-crete NLCB scheme is algebraically nonlinear, special iterative meth-

tions. The low-order equations are derived by integratingods are needed to solve it efficiently. In this paper, we describe a
fast new iterative algorithm, based on the nonlinear averaged flux the transport equation over certain intervals of the angular
method, for solving the discrete NLCB equations. We present nu- variable. The resulting system of angle-independent equa-
merical results that illustrate the efficiency of the new algorithm. tions is closed by special linear-fractional functionals that
Q 1997 Academic Press

are weakly dependent on the transport solution. The stabil-
ity of these functionals with respect to the variation of the
solution during iterations yields high convergence rates.1. INTRODUCTION
The AF method is a member of a class of quasi-projective
(QP) methods [11, 12], also known as projected discreteThe linear Boltzmann equation describes the interaction
ordinates (PDO) methods [13]. The quasi-diffusion [14]of radiation (for example, neutrons) with matter. Linearity
(QD), second-flux [15], and a-weighted acceleration [16]follows if the neutrons are sufficiently rarefied that they
methods are other examples of QP (or PDO) methods.interact mainly with the atoms in the background system,
These methods differ by the form of the low-order prob-not with themselves. There now exists a group of nonlinear
lem, which comes from integrating the transport equationspatial discretization schemes for the linear Boltzmann
over various intervals with different weight functions. Un-transport equation. Some of these are the characteristic
like the diffusion synthetic acceleration (DSA) methodmethod with nonlinear interpolation [1], the adaptive
[13], the AF method does not require consistently discret-weighted diamond-differencing (AWDD) method [2, 3],
ized transport and low-order equations. However, inconsis-the exponential method [4], the nonlinear characteristic
tent differencing produces a converged solution that differs(NLC) scheme [5, 6], the exponential characteristic (EC)
from the unaccelerated solution unless the mesh is suffi-method [7], and the nonlinear corner-balance (NLCB)
ciently fine. This different solution is still a legitimate dis-method [8]. Most of these methods generate very accurate
cretized transport solution and may be even more accuratenumerical transport solutions. In this paper we consider
than the unaccelerated one.the fourth-order NLCB method, which is strictly positive

In this paper we develop a ‘‘pure’’ acceleration methodand very accurate on coarse spatial grids, especially for
for the NLCB scheme, using consistent discretizations, fordeep penetration problems. To solve the NLCB equations,
planar-geometry transport problems. To begin, we applyan iterative algorithm must be used. The simplest iterative
the AF method to the discrete NLCB scheme and derivealgorithm is the source iteration (SI) method, which con-
the corresponding discrete low-order problem. The dis-verges too slowly for many important problems. A variety
crete NLCB equations are nonlinear; hence, the resultingof iterative acceleration methods have been developed for
low-order equations are also nonlinear in the same way.linear transport differencing schemes, but because of the
To cope with this nonlinearity, we apply a Newton’s linear-nonlinear nature of the NLCB equations, a special algo-
ization to the low-order difference equations. The linear-rithm is needed. In this paper, we develop such an algo-
ized low-order problem is solved by Newton’s method.rithm for the NLCB scheme and demonstrate its effec-

tiveness. Thus, the main computational work arising from the non-
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linearity of the NLCB method is performed in the inexpen- Here, c(x, e) and f(x) are the angular and scalar fluxes,
Q(x) is the interior source, and st (x) and ss (x) are thesive low-order problem. The resulting acceleration method
total and scattering cross sections.converges very rapidly. The extension to multiple space

To formulate the NLCB method [8], we define a spatialdimensions is straightforward, but efficiently obtaining the
mesh hxi11/2, i 5 0, ..., Nx , x1/2 5 0, xNx11/2 5 Lj and angularsolution of the linearized low-order equations may be-
quadrature set hem, wm, m 5 1, ..., Nej. We assume thatcome problematic.
cross sections and source are piecewise constant on eachEarlier the AF method was used for acceleration of the
spatial cell. The NLCB method consists of the half-cellNLC method by T. Wareing, W. Walters and J. Morel [17].
balance (HCB) equations coupled with characteristic equa-The spatially nonlinear low-order problem for the NLC
tionsmethod was derived by means of the AF method. This

nonlinear problem was linearized, but Newton’s iteration
method was not used to solve the linearized low-order em(cm,i 2 cm,i21/2) 1

1
2

st,i cL,m,i hi 5
1
4

(ss,i fL,i 1 Qi)hi , (5)
equations. That is, the algorithm [17] is equivalent to per-
forming one Newton’s iteration on the low-order equations
after each high-order sweep. T. Wareing, W. Walters and em(cm,i11/2 2 cm,i) 1

1
2

st,i cR,m,i hi 5
1
4

(ss,i fR,i 1 Qi)hi , (6)
J. Morel also use a different approach based on the DSA
method [18], where the NLC method is first linearized with i 5 1, ..., Nx, m 5 1, ..., Ne,
respect to certain parameters. Then, the resulting linear
transport problem is solved by means of the DSA method, fL,i 5 ONe

m51
cL,m,i wm, fR,i 5 ONe

m51
cR,m,i wm, (7)

and the parameters are updated using Newton’s method.
The remainder of this paper is organized as follows. In

Sec. 2 we describe the NLCB method. In Sec. 3 we formu- cm,i 5 cm,i11/2 est,ihi/(2em) 1
1

2em
Exi

xi11/2

(ss,i f̃i (x)
late the new nonlinear acceleration method for the NLCB
method. In Sec. 4 we present numerical results, which 1 Qi)e2st,i(xi2x)/em dx, (8)
include comparisons with the NLC scheme accelerated by
the AF and DSA methods [17, 18]. We also demonstrate cm,i21/2 5 cm,i est,ihi/(2em) 1

1
2em

Exi21/2

xi

(ss,i f̃i (x)
the accuracy of the considered NLCB scheme compared
to the diamond-differencing (DD) method [19]. In Sec. 5 1 Qi)e2st,i(xi21/22x)/em dx, (9)
we conclude with a brief discussion.

i 5 1, ..., Nx , 21 # em , 0,

2. FORMULATION OF THE NONLINEAR cm,i 5 cm,i21/2 e2st,ihi/(2em) 1
1

2em
Exi

xi21/2

(ss,i f̃i (x)
CORNER-BALANCE METHOD

1 Qi)e2st,i(xi2x)/em dx, (10)Let us consider the following single-group planar-geom-
etry transport problem with isotropic scattering and source:

cm,i11/2 5 cm,i e2st,ihi/(2em) 1
1

2em
Exi11/2

xi

(ss,i f̃i (x)

1 Qi)e2st,i(xi11/22x)/em dx, (11)e
­

­x
c(x, e) 1 st (x)c(x, e) 5

1
2

(ss (x)f(x) 1 Q(x)), (1)
i 5 1, ..., Nx , 0 , em # 1,

21 # e # 1, 0 # x # L,
where

f(x) 5 E1

21
c(x, e) de, (2)

hi 5 xi11/2 2 xi21/2, xi 5
1
2

(xi11/2 1 xi21/2). (12)
with reflective left boundary

The boundary conditions are
c(0, e) 5 c(0, 2e), 0 , e # 1, (3)

c1/2,m 5 c1/2,m*, 0 , em # 1, m* : em* 5 2em, (13)

and with a prescribed incident angular flux on the right cNx11/2,m 5 c in
m, 1 # em , 0, c in

m 5 c in(em). (14)
boundary

Here cm,i is the cell-midpoint angular flux, and cm,i11/2 is
the cell-edge one. The subscripts L and R denote functionsc(L, e) 5 c in(e), 21 # e , 0. (4)
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spatially averaged over the left- and right-half of the i-th
cm,i11/2 5 cm,i e2tm,i 1

Qi

2st,i
(1 2 e2tm,i)cell, respectively:

1
1

4em
ss,i fR,i u

1
m,i , (24)cL,m,i 5

2
hi
Exi

xi21/2

c(x, em) dx,

(15)
i 5 1, ..., Nx, 21 # em , 1,

cR,m,i 5
2
hi
Exi11/2

xi

c(x, em) dx.

The scalar flux in the right sides of the difference equa- where
tions (8)–(11) is approximated in the i-th cell by the expo-
nential:

tm,i 5
st,i hi

2uemu
, (25)

f̃i (x) 5 ai ebi(x2xi), xi21/2 , x , xi11/2 . (16)

u2
m,i 5 um,i (zi), (26)

The interpolation parameters ai and bi are determined by
the conditions:

u1
m,i 5 2um,i S1

zi
D , (27)

2
hi
Exi

xi21/2

ai ebi(x2xi) dx 5 fL,i , (17)
um,i (y) 5

(1 2 ye2tm,i)hi log y
(log y 2 tm,i)(y 2 1)

, (28)
2
hi
Exi11/2

xi

ai ebi(x2xi) dx 5 fR,i . (18)
zi 5

fR,i

fL,i
. (29)

The use of this approximation gives rise to the nonlinearity
of the difference scheme. Solving Eqs. (17) and (18) for

The NLCB method for the transport equation (1)–(2) isai and bi, we have
defined by the two HCB equations (5)–(6) and four NDC
equations (21)–(24), which contain nonlinear scattering-

ai 5
fR,i fL,i

fR,i 2 fL,i
log SfR,i

fL,i
D , (19) like terms. Our proposed method for solving NLCB equa-

tions consists of iterations that cope with the nonlinearity
of the scheme and with the scattering.

bi 5
2
hi

log SfR,i

fL,i
D . (20)

3. ACCELERATION METHOD
Then, using Eqs. (8)–(11), (19) and (20), we obtain the
following nonlinear difference characteristic (NDC) equa- The proposed method for solving the nonlinear NLCB
tions: method (5), (6) and (21)–(29) with boundary conditions

(13) and (14) is based on the nonlinear averaged flux (AF)
method [9, 10]. To derive this method, the transport equa-cm,i 5 cm,i11/2 e2tm,i 1

Qi

2st,i
(1 2 e2tm,i)

tion is integrated over 21 # e # 0 and over 0 # e # 1.
To close the resulting set of equations, special functionals

1
1

4em
ss,i fR,i u

2
m,i , (21) are introduced. One obtains:

cm,i21/2 5 cm,i e2tm,i 1
Qi

2st,i
(1 2 e2tm,i)

e
­

­x
c(x, e) 1 st (x)c(x, e) 5

1
2

(ss (x)f(x) 1 Q(x)), (30)

1
1

4em
ss,i fL,i u

2
m,i , (22) c(0, e) 5 c(0, 2e), 0 , e # 1, (31)

i 5 1, ..., Nx, 21 # em , 0, c(L, e) 5 c in(e), 21 # e , 0, (32)

cm,i 5 cm,i21/2 e2tm,i 1
Qi

2st,i
(1 2 e2tm,i) G 2(x) 5 E0

21
ec(x, e) de@E0

21
c(x, e) de, (33)

1
1

4em
ss,i fL,i u

1
m,i , (23) G 1(x) 5 E1

0
ec(x, e) de@E1

0
c(x, e) de, (34)
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3. Using the new angular flux c (k11) (x, e) from stepd
dx

(G 2(x)f2(x)) 1 Sst (x) 2
1
2

ss (x)D f2(x) 2, we calculate the functionals G 6
(k11)

(x) [Eqs. (33)–(34)]:

5
1
2

(ss (x)f1(x) 1 Q(x)), (35)
G 6

(k11)
5 E61

0
ec (k11) de@E61

0
c (k11) de. (49)

d
dx

(G 1(x)f1(x)) 1 Sst (x) 2
1
2

ss (x)D f1(x)
For the first iteration (k 5 0) the functionals G 6

(0)
are

calculated by assuming an isotropic angular flux c (0) (x, e).
5

1
2

(ss (x)f2(x) 1 Q(x)), (36) The AF method is stable for independent discretizations
of the high-order and low-order transport problems. How-
ever, to develop a pure acceleration method for the NLCBf1(0) 5 f2(0), (37)
method, based on the AF method, we use a consistent

f2(L) 5 fin, (38) difference scheme. To derive the discretization of the low-
order equations (35)–(36) consistent with the NLCBf(x) 5 f1(x) 1 f2(x). (39)
scheme, we first sum the HCB equations (5) and (6) in a
way that corresponds to the integrations over 21 # e andHere
0 # e # 1. We use a quadrature set hem, wmj that satisfies
the conditions:

f2(x) 5 E0

21
c(x, e) de, f1(x) 5 E1

0
c(x, e) de (40)

O
m[M6

wm 5 1, (50)
are the partial scalar fluxes, and

fin 5 E0

21
c in(e) de. (41)

where

We note that the resulting nonlinear problem (30)–(39) is
M 2 5 hm : em # 0j, M 1 5 hm : em $ 0j. (51)equivalent to the original linear transport problem (1)–(4).

The nonlinear system of equations (30)–(39) is solved
iteratively, with three steps per iteration: Thus, we sum the NDC equations (21)–(24) over M 6 in

each half-cell with weight em. To close the resulting differ-1. Assuming that the functionals G 6
(k)

are known from
ence equations, we introduce functionals similar to G 6 (x)the previous (k-th) outer iteration, the low-order transport
[Eqs. (33)–(34)]:problem [Eqs. (35)–(38)] is solved for the partial scalar

fluxes f6(k11) (x) to obtain the scalar flux

G 6
i 5 O

m[M6

emcm,i wm@ O
m[M 6

cm,i wm, (52)
d

dx
G 6

(k)
f6

(k11)
1 Sst 2

1
2

ssD f6
(k11)

5
1
2

(ssf
7

(k11)
1 Q),

G 6
i21/2 5 O

m[M6

emcm,i21/2 wm@ O
m[M6

cm,i21/2 wm, (53)

(42)
F 6

i 5 O
m[M6

em e2tm,icm,i wm@ O
m[M6

emcm,i wm, (54)
f1

(k11)
(0) 5 f2

(k11)
(0), (43)

f2
(k11)

(L) 5 fin, (44) F 6
i71/2 5 O

m[M6

em e2tm,icm,i71/2 wm@ O
m[M 6

emcm,i71/2 wm, (55)

f(k11) 5 f1
(k11)

1 f2
(k11)

. (45)
E 6

i 5 O
m[M6

em (1 2 e2tm,i)wm, (56)
2. Using the scalar flux f(k11) (x) from step 1, we solve

the following transport problem to determine c (k11) (x, e): P 6
i 5 O

m[M6

u6
m,i wm , (57)

i 5 1, ..., Nx .e
­c (k11)

­x
1 st c

(k11) 5
1
2

(ss f(k11) 1 Q), (46)

c (k11)(0, e) 5 c (k11)(0, 2e), 0 , e # 1, (47)
The discrete low-order problem of the AF method con-

sistent with the NLCB scheme then has the following form:c (k11)(L, e) 5 c in(e), 21 # e , 0. (48)
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the set of functionals (52)–(57), and the low-order problem
G 6

i f6
i 2 G 6

i21/2 f6
i21/2 1

1
2 Sst,i 2

1
2

ss,iD hi f
6
L,i (58)–(63), (70), and (71). This system of equations is solved

according to a nonlinear iteration procedure that is similar
5

1
4

hi (ss,i f
7
L,i 1 Qi), (58) to the one described above [Eqs. (42)–(49)]. If some guess

for the scalar flux is known, then one can calculate the
angular flux from the transport differencing equations (5),

G 6
i11/2 f6

i11/2 2 G 6
i f6

i 1
1
2 Sst,i 2

1
2

ss,iD hi f
6
R,i (6), (13), (14), and (21)–(24), in spite of the fact that the

right-hand sides of the NDC equations (21)–(24) are non-
5

1
4

hi (ss,i f
7
R,i 1 Qi), (59) linear with respect to the scalar flux. However, to solve

the nonlinear low-order problem for the partial scalar
fluxes, we linearize Eqs. (60)–(63) with respect to fL,i and

G 2
i f2

i 5 G 2
i11/2 f2

i11/2 1
Qi

2st,i
E 2

i 1
1
4

ss,i fR,i P2
i , (60)

fR,i by means of Newton’s method. These equations con-
tain nonlinear terms fR,i P6

i and fL,i P6
i , where P6

i 5 P6(zi),
zi 5 fR,i/fL,i (see Eqs. (26)–(29) and (57)). On the s-thG 2

i21/2 f2
i21/2 5 G 2

i f2
i 1

Qi

2st,i
E 2

i 1
1
4

ss,i fL,i P2
i , (61)

Newton’s iteration, these terms have the form:

G 1
i f1

i 5 G 1
i21/2 f1

i21/2 1
Qi

2st,i
E 1

i 1
1
4

ss,i fL,i P1
i , (62)

f(s)
R,i P6

(s)

i 5 f(s21)
R,i P6

(s21)

i 1 S­fR P6

­fR
D(s21)

i
(f(s)

R,i 2 f(s21)
R,i )

G 1
i11/2 f1

i11/2 5 G 1
i f1

i 1
Qi

2st,i
E 1

i 1
1
4

ss,i fR,i P1
i , (63)

1 S­fR P6

­fL
D(s21)

i
(f(s)

L,i 2 f(s21)
L,i ), (72)

where
f(s)

L,i P6
(s)

i 5 f(s21)
L,i P6

(s21)

i 1 S­fL P6

­fR
D(s21)

i
(f(s)

R,i 2 f(s21)
R,i )

f6
i 5 O

m[M6

cm,i wm , (64)

1 S­fL P6

­fL
D(s21)

i
(f(s)

L,i 2 f(s21)
L,i ). (73)

f6
i21/2 5 O

m[M6

cm,i21/2 wm , (65)

Rearrangement of Eqs. (72) and (73) givesf6
L,i 5 O

m[M6

cL,m,i wm , (66)

f6
R,i 5 O

m[M6

cR,m,i wm , (67) f(s)
R,i P6

(s)

i 5 SP6
(s21)

i 1 z(s21)
i S­P6

­z D(s21)

i
D f(s)

R,i

fR,i 5 f2
R,i 1 f1

R,i , (68)
2 (z(s21)

i )2 S­P6

­z D(s21)

i
f(s)

L,i , (74)
fL,i 5 f2

L,i 1 f1
L,i . (69)

f(s)
L,i P6

(s)

i 5 SP6
(s21)

i 2 z(s21)
i S­P6

­z D(s21)

i
D f(s)

L,iTo derive boundary conditions for the low-order problems,
we sum the boundary conditions (13) and (14) for the
transport differencing equations by means of the quadra-

1 S­P6

­z D(s21)

i
f(s)

R,i . (75)ture set hem, wmj to get

f1
1/2 5 f2

1/2 , (70) We note that in one-dimensional geometry, the linear-
ized low-order difference problem can be solved directly

f2
Nx11/2 5 f̂in, (71)

as in the case with other methods such as QD or DSA. In
one-dimensional geometries various methods are nearly

where equal from the viewpoint of computations required for
solving the low-order problem. However, in multi-dimen-
sional geometries it will be necessary to develop efficientf̂in 5 O

m[M2

c in
m wm .

iterative methods for solving low-order equations of the
AF method, for example, using the transport synthetic
acceleration method [20].The complete set of difference equations of the nonlin-

ear AF method for the NLCB method consists of the high- Finally, we have the iteration procedure (outer itera-
tions), which consists of the following three steps:order transport problem (5), (6), (13), (14), and (21)–(24),
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TABLE I

Number of Iterations versus Nx for Problem 1

NLCB method with AF method
NLC method:

Number of Total number of Total number of
Nx st h outer iterations inner iterations SI method DSA iterations

2 30.0 3 12 812 19
4 15.0 3 11 547 17
8 7.5 4 12 462 17

16 3.25 5 14 446 17
32 1.875 5 13 444 18
64 0.9375 6 15 444 20

128 0.46875 7 16 444 20

1. Assuming that functionals G 6
(k)

i , G 6
(k)

i21/2, F 6
(k)

i , be nonpositive in some spatial mesh cells. The linearized
discrete low-order equations contain terms with log zi,F 6

(k)

i71/2, [Eqs. (52)–(55)] are known, we solve the linearized
low-order problem [Eqs. (58)–(63), (68)–(71), (74), and where zi 5 fR,i/fL,i . Hence, it is impossible to proceed

with inner iterations if zi # 0, and we need to fix up nonposi-(75)] by Newton’s method to obtain partial scalar fluxes
f6(k11)

i , f6
(k11)

i21/2 , f6
(k11)

L,i , and f6
(k11)

R,i (inner iterations). Then, we tive values of zi. If z(s)
i 5 z*, z* # 0 for some i 5 i*, then

in this mesh cell we change the value z(s)
i* to As(z(s21)

i* 1 z*).calculate the scalar fluxes f(k11)
L,i and f(k11)

R,i .
We repeat this procedure until z(s)

i* becomes positive. We2. Using the scalar fluxes obtained from the low-order
have not experienced any difficulties with this simple algo-problem, we solve the NLCB equations [Eqs. (5), (6), (13),
rithm.(14), and (21)–(29)] to determine the angular fluxes

An iterative algorithm for the NLCB method similar toc (k11)
m,i , c (k11)

m,i21/2, c (k11)
L,m,i and c (k11)

R,m,i .
that described above can also be developed by means of

3. Using c (k11)
i and c (k11)

i21/2 , we calculate the functionals
nonlinear a-weighted acceleration (a-WA) methods [16].

G 6
(k11)

i , G 6(k11)
i21/2 , F 6

(k11)

i , and F 6
(k11)

i71/2 [Eqs. (52)–(55)].
This parametrized family of nonlinear acceleration meth-
ods is a generalization of the nonlinear ‘‘flux’’ methods.The functionals E 6

i [Eq. (56)] do not change during
iterations, so they may be precalculated. For the first outer The low-order problems of a-WA methods are obtained

by integrating the transport equation over 21 # e # 0iteration (k 5 0), we calculate the functionals G 6
(0)

i ,
G 6

(0)

i21/2, F 6(0)

i , F 6
(0)

i71/2 by assuming that the angular flux c (0) and 0 # e # 1 with weights ueua, where the constant
a $ 0. To close this system of equations, functionals similaris isotropic. As an initial guess for the inner (Newton’s)

iterations, we use the solution of the low-order problem to G 6 are introduced. The nonlinear a-WA methods with
a 5 0 and a 5 1 correspond to the AF (or first-flux)from the previous outer iteration.

The converged solution of each low-order problem is and second-flux [15] methods, respectively. Methods with
particular values of the parameter a have certain advan-strictly positive. However, the solution of the linearized

low-order problem during a given Newton’s iteration may tages compared to others. For example, the consideration
of these methods in differential form shows that the
method with a 5 0.128 possesses a minimum spectral ra-
dius for the scattering ratio c 5 1.TABLE II

We considered the a-WA family of iteration methods
Numbers of Inner Iterations for Problem 1 for the consistently-differenced NLCB scheme. We found

that the choice a 5 0 (namely, the AF method) gives theOuter iteration
best acceleration of the NLCB scheme in most problems.

Nx 1 2 3 4 5 6 7 The method with a 5 0.128 converges slightly faster than
the AF method only for c P 1 and optically thin mesh cells.

2 8 2 2 — — — —
4 7 2 2 — — — —
8 6 2 2 2 — — — 4. NUMERICAL RESULTS

16 5 3 2 2 2 — —
32 4 3 2 2 2 — — To demonstrate the efficiency of the proposed accelera-
64 5 2 2 2 2 2 —

tion method, we present numerical results from three128 4 2 2 2 2 2 2
test problems.
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TABLE IVTABLE III

I 1(L) for Problem 1D(k) for Problem 1

Outer iteration (k) Nx NLCB NLC DD

Nx 3 4 5 6 7 2 6.33 3 10211 5.68 3 10211 1.77 3 1021

4 5.43 3 10211 5.56 3 10211 2.05 3 1022

2 1.2 3 1027 — — — — 8 4.55 3 10211 4.67 3 10211 1.14 3 1023

4 9.0 3 1026 — — — — 16 4.19 3 10211 4.20 3 10211 1.34 3 1024

8 5.3 3 1024 1.4 3 1023 — — — 32 4.10 3 10211 4.09 3 10211 5.90 3 1025

16 6.6 3 1023 1.2 3 1022 1.3 3 1022 — — 64 4.07 3 10211 4.07 3 10211 3.18 3 10211

32 3.6 3 1022 3,1 3 1022 3.2 3 1022 — — 128 4.07 3 10211 4.07 3 10211 3.83 3 10211

64 8.6 3 1022 4.6 3 1022 4.2 3 1022 5.0 3 1022 —
128 7.6 3 1022 6.0 3 1022 7.8 3 1022 7.2 3 1022 9.9 3 1022

and DD method [19], in Table 4 we present the values of
the outgoing current on the right boundary (x 5 L)

Problem 1: This is a homogeneous slab 0 # x # 60 cm,
with st 5 1 cm21, ss 5 0.95 cm21, and Q 5 0. The left I 1(L) 5 E1

0
ec(L, e) de

boundary has an isotropic incident flux with magnitude
unity, and the right boundary has no incident flux [18]. We for various Nx .
use the standard S16 Gauss-Legendre quadrature set and These results illustrate several key points. First, the new
uniform spatial grids. The relative pointwise convergence iteration scheme is extremely effective at reducing the
criteria are «inner 5 1025 (for inner iterations) and «outer 5 number of high-order transport sweeps, compared to both
1024 (for outer iterations). In solving the problems by the SI and to the DSA algorithm for the NLC method [18] of
SI method, we use the convergence criterion in the follow- Wareing et al. The number of high-order sweeps in the
ing form: new scheme varied from 3 to 7; with SI, the range was 444

to 812; and with the DSA algorithm for the NLC method
[18] the range was 17 to 20. This reduction in the number

max
i[[1,Nx11]

U1 2
f(k)

i21/2

f(k)
i21/2

U# (1 2 r)«outer , (76) of high-order sweeps results from our strategy of doing as
much work as possible in the low-order equations. Second,
inner (Newton’s) iterations converged quickly, never tak-

where r is the spectral radius, numerically estimated in L2- ing more than 7 iterations for a low-order problem and
norm. This protects from false convergence. never totaling more than 16 for all low-order solutions

In Table 1 we list the number of iterations for the NLCB in one overall problem. We ran this problem on a Sun
scheme, solved by the new acceleration method and by the SPARCstation 10 model Q90 with the operating system
SI method. The results are obtained for various numbers of Solaris 2.5.1. For Nx 5 64, 3.1 seconds were required for
spatial mesh cells Nx. Table 1 also shows the results for the the SI method and 0.3 seconds for the new method. [We
nonlinear characteristic (NLC) method [18] accelerated by measured only the time spent in the execution of com-
the DSA method. Wareing et al. [18] first linearized the mands (user time).] The execution time of one Newton’s
NLC method with respect to certain parameters. Then, the iteration in the low-order problem is about 2.5 times as
resulting linear transport problem was solved by means of great as the time for the transport sweep in the high-order
the DSA method. The total numbers of the DSA linear problem. However, the efficient acceleration gives rise to
transport iterations in this problem are presented. In Table significantly reduced execution time as a whole. Note that
2, the distribution of numbers of inner iterations during
outer iterations is shown. In Table 3, we listed the values

TABLE V

Parameters of Problem 2
D(k) 5

maxi uf(k)
i 2 f(k21)

i u
maxi uf(k21)

i 2 f(k22)
i u

, 1 # i # Nx , (77)

Region number 1 2 3

Right boundary (cm) 25 40 100which characterize the rate of error decrease during the
st (cm21) 1.0 1.0 1.0outer iterations. To show the accuracy of the calculations
ss (cm21) 0.8 0.99 0.7

by means of the NLCB methods in deep penetration prob- Q (cm23 s21) 0.1 1.0 0.05
lems and compare the results with the NLC method [18]
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TABLE VI

Number of Iterations versus Nx for Problem 2

Number of NLCB method with AF method
NLC method:cells in region

Number of Total number of SI Total number of
Nx 1 2 3 outer iterations inner iterations method DSA iterations

4 1 1 2 3 10 242 8
8 2 2 4 3 9 416 10

16 4 4 8 4 11 447 12
32 8 8 16 4 12 451 10
64 16 16 32 5 13 452 7

128 32 32 64 5 14 452 7

we did not optimize the method for solving the matrix of linear transport iterations of the NLC method with the
DSA algorithm [18] ranged from 7 to 12. The total numbersystem in the low-order problem. We simply used banded

solver from LAPACK21. In multidimensional problems, of inner (Newton’s) iterations in the low-order problem
for the new method varied from 9 to 14. This problem forhowever, it will be essential to devise an efficient solution

procedure for the low-order system, for the cost of direct Nx 5 64 required 3.3 seconds for the SI method and 0.3
seconds for the new method. These results show again thatinversion will be prohibitive in many cases. The low-order

solution will require considerable care in multidimensional the proposed method efficiently accelerates the iterative
convergence of the NLCB scheme.geometries because in this case the computational cost of

the low-order problem is much greater, in a relative sense In Problem 1 for Nx 5 64 and 128, and in Problem 2 for
Nx 5 4 and 128, zi 5 fR,i/fL,i becomes nonpositive in somecompared to the high-order problem.

Problem 2: This problem is a slab 0 # x # 100 cm with spatial cells during the inner (Newton’s) iterations, and
the fixup procedure described above was used. All thesevacuum boundaries [18]. The slab consists of three regions,

whose parameters are listed in Table 5. The spatial cells cases of zi , 0 occur on the first outer iteration during
either the first or second Newton’s (inner) iterations, i.e.in each region are uniform. The S16 Gauss-Legendre quad-

rature set was used. The relative pointwise convergence at the very beginning of the whole iteration process. The
reason for the nonpositivity of zi is an inaccurate initialcriteria are «inner 5 1025 and «outer 5 1024.

The results of calculations by means of the new and the guess. Note that the number of iterations in these cases
did not change compared to results for other spatial meshesSI method are presented in Table 6. This table shows also

the numerical results of the NLC scheme accelerated by in which zi in the low-order problem during the inner
iterations is always positive. We conclude from this andthe DSA method [18]. In Table 7 we show the number of

inner (Newton’s) iterations for each outer iteration. The other tests that our simple z fixup does not degrade the
convergence of the Newton’s iterations.values of D(k) [Eq. (77)] are listed in Table 8.

In this multiregion problem, the number of high-order Problem 3: This is a homogeneous slab 0 # x # 60 cm,
with vacuum boundaries, st 5 1 cm21, ss 5 1 cm21, andsweeps in the new method varied from 3 to 5, while in

case of the SI method the range was 242 to 452. The number Q 5 1 cm23 s21 [17]. The standard S16 Gauss-Legendre
quadrature set and uniform spatial grids are utilized. The
relative pointwise convergence criteria are «inner 5 1025

and «outer 5 1024.TABLE VII
Table 9 presents the results for various numbers of meshNumbers of Inner Iterations for Problem 2

cells Nx. In this table we show the number of outer itera-
tions in the proposed algorithm for the NLCB methodOuter iteration

provided the Newton’s (inner) iterations in the low-order
Nx 1 2 3 4 5 problem are converged. The total number of Newton’s

(inner) iterations is shown in parentheses. The results of4 6 2 2 — —
the NLC scheme accelerated by the AF method [17] are8 5 2 2 — —

16 5 2 2 2 — also listed. This algorithm for the NLC scheme is equiva-
32 5 3 2 2 — lent to only one Newton’s iteration in each low-order prob-
64 4 3 2 2 2

lem. In most cases the number of transport sweeps in this128 5 3 2 2 2
method is two times greater than in the presented iteration
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TABLE VIII acceleration method the high-order problem is solved no-
ticeably fewer times compared to the method [17, 18] pre-D(k) for Problem 2
sented by Wareing et al. The main difference in the pre-

Outer iteration (k) sented method from the acceleration method in [18] is
that Newton’s linearization is performed in the inexpensive

Nx 3 4 5
low-order problem. The new method differs from the accel-
eration method in [17], which also uses the linearized low-4 1.7 3 1028 — —

8 1.1 3 1023 — — order problem generated by means of the AF method, in
16 1.3 3 1022 1.3 3 1022 — that the linearized low-order problem is solved by New-
32 2.2 3 1022 2.5 3 1022 — ton’s iterations until convergence. Thus, most of the accel-64 2.7 3 1022 2.1 3 1022 5.3 3 1022

eration work in the developed method is done on the low-128 3.6 3 1022 2.5 3 1022 5.9 3 1022

order level. Also, the fixup of a negative transport iterate
in the low-order problem does not influence the number
of outer iterations because the converged low-order scalar
flux is always positive.algorithm for the NLCB method. We also performed calcu-

lations with only one Newton’s (inner) iteration in the low-
order problem, and included our results. They are similar 5. DISCUSSION
to the results of the acceleration algorithm for the NLC
method based on the AF method [17]. Thus, if one per- We have developed a rapidly convergent iteration algo-

rithm, based on the AF method, for the NLCB scheme. Theforms Newton’s iterations in the low-order problem until
convergence, one obtains in significant reduction in the linearization of this nonlinear spatial difference scheme is

performed in the low-order problem, resulting in consider-number of outer iterations, i.e. transport sweeps.
The results of these three test problems show that the able computational savings. The Newton’s iterations are

performed until convergence. The number of Newton’snew acceleration method for the NLCB method converges
much more rapidly than source iteration. Also, the number iterations on the low-order problem is small.

In multi-dimensional geometries it is necessary to de-of Newton’s (inner) iterations in each low-order problem
is small. Because the NLCB method and the NLC method velop efficient iterative methods for solving low-order

equations of the AF method. Note that other nonlinearhave similar nonlinearities, it is interesting to compare the
efficiency of various approaches for accelerating these two iteration methods, such as the quasi-diffusion method [14],

can also be used in place of AF in our iteration framework.methods. In most of the test problems presented above,
the number of outer iterations (transport sweeps) required For multi-dimensional problems, one should choose the

basic method that generates the low-order problem thatby the new method for the NLCB scheme is at most half
the number of high-order transport sweeps required by is easiest to solve. These are subjects of future research.

Finally, we note that the algorithm described here can beiteration algorithms for the NLC scheme based on the AF
and DSA methods [17, 18]. This means that in the new applied to other nonlinear transport differencing schemes.

TABLE IX

Number of Iterations versus Nx for Problem 3

NLCB method with AF method:
Number of outer iterations

With converged With one Newton’s NLC method
Nx st h Newton’s (inner) iterations (inner) iteration with AF method

2 30. 3 (10)a 6 6
3 20. 3 (10) 6 6
4 15 3 (10) 6 6
6 10 3 (10) 6 6

12 5 4 (11) 6 6
30 3 4 (11) 8 5
60 1 4 (10) 6 4

600 0.1 5 (12) 12 12

a The values in parentheses are the total number of Newton’s (inner) iterations.
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